

Cirval CE

Medium - Low Pressure Gas Regulator

Pietro Fiorentini S.p.A.

Via E.Fermi, 8/10 | 36057 Arcugnano, Italy | +39 0444 968 511 sales@fiorentini.com

The data are not binding. We reserve the right to make changes without prior notice.

cirvalCE_technicalbrochure_ENG_revB

www.fiorentini.com

Who we are

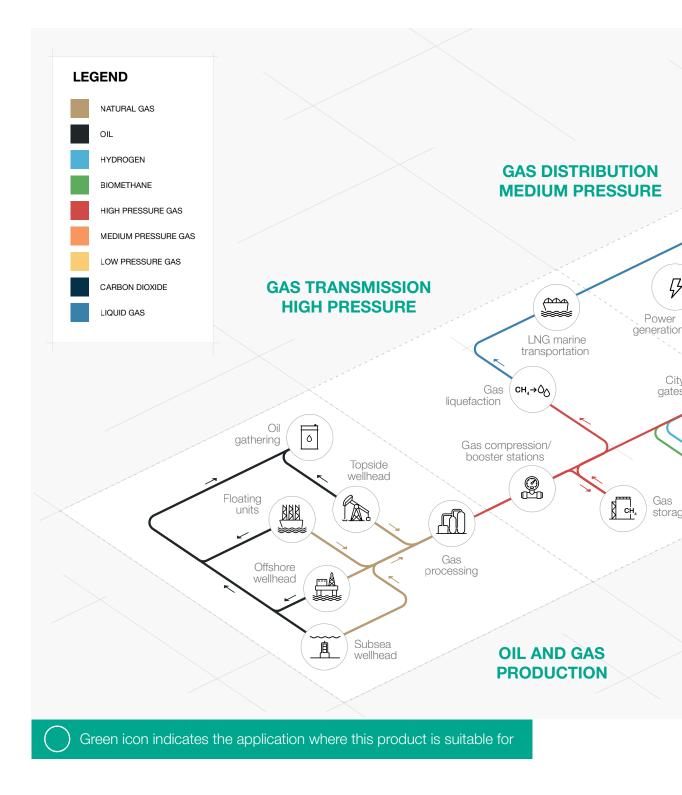
We are a global organization specialized in designing and manufacturing technologically advanced solutions for natural gas treatment, transmission and distribution systems.

We are the ideal partner for operators in the Oil & Gas sector, with a business offer that goes across the whole natural gas chain.

We are in constant evolution to meet our customers' highest expectations in terms of quality and reliability.

Our aim is to be a step ahead of the competition, with customized technologies and an after-sale service program undertaken with the highest grade of professionalism.

Pietro Fiorentini advantages


Localised technical support

Experience since 1940

We operate in over 100 countries

Area of Application

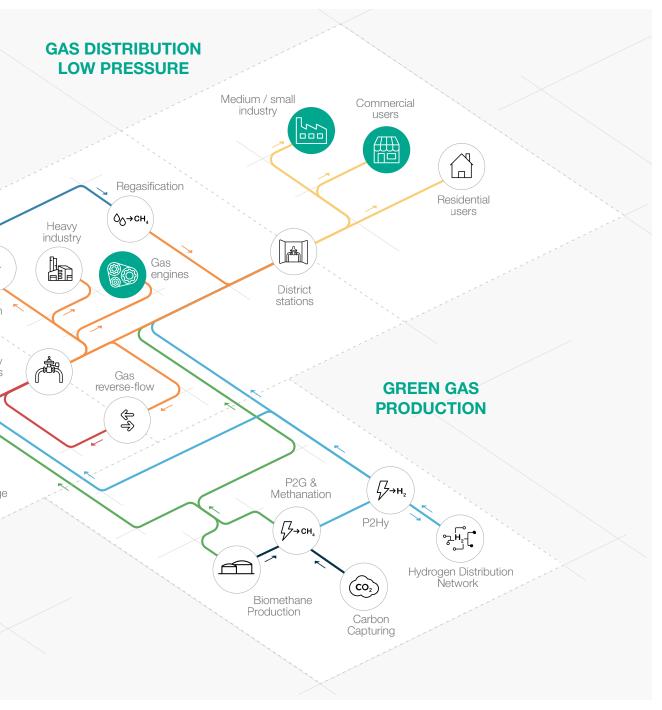
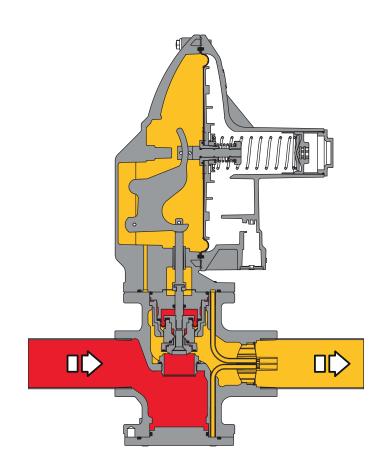


Figure 1 Area of Application Map

Introduction


The **Cirval CE** is a **lever-operated gas pressure regulator** controlled by a diaphragm and setting spring which controls the valve.

Mainly used for commercial and industrial applications.

It should to be used with previously filtered non-corrosive gases.

According to the European Standard EN 334, it is classified as Fail Open.

The Cirval CE is Hydrogen Ready for NG-H2 blending.

Inlet pressure

Outlet pressure

Figure 2 Cirval CE

Features and Calibration ranges

The Cirval CE is a lever-operated device for medium and low pressure with a unique dynamic balancing cartridge system which ensures an **outstanding turndown ratio** combined with an extremely **accurate outlet pressure control.**

A balanced pressure regulator is a pressure regulator where the delivery pressure accuracy is not affected by the fluctuation of the inlet pressure and flow during its operation. Therefore, a balance pressure regulator can have a single orifice for all pressure and flow operating conditions.

The Cirval CE is available in two sizes: the Cirval CE 200 and the Cirval CE 300

This regulator should be used with previously filtered, non-corrosive gases in distribution networks as well as commercial and industrial applications.

It is a **truly top entry design** which allows an **easy maintenance** of parts directly in the field **without removing the body from the pipework.**

The modular design of the Cirval CE pressure regulators allows for retrofitting either a slam shut valve or Integral Full Monitor (IFM).

It is available both with internal and external sensing line.

Figure 3 Cirval CE 300

Figure 4 Cirval CE 300 with LA slam shut valve

Cirval CE competitive advantages

Compact and simple design

High accuracy

Fail Open plug and seat regulator

Balanced type

Built-in accessories

Easy maintenance

Top entry

Biomethane compatible and 20% Hydrogen blending compatible. Higher blending available on request

Token IRV

Features

Fratance	Mahaaa				
Features	Values				
Design pressure* (PS1 / DP2)	up to 860 kPa up to 8.6 bar				
Ambient temperature* (TS1)**	from -20 °C to +60 °C from -4 °F to +140 °F				
Inlet gas temperature*,***	from -20 °C to +60 °C from -4 °F to +140 °F				
Inlet pressure (MAOP / p _{umax} 1)	Internal sensing line from 13.8 kPa to 517 kPa from 138 mbar to 5.17 bar	External sensing line from 13.8 kPa to 861 kPa from 138 mbar to 8.6 bar			
Range of downstream pressure (Wd ¹)	from 1.4 kPa to 83 kPa from 14 mbar to 830 mbar				
Available accessories	LA Slam shut, IFM (Integral Full Mo	nitor), built-in strainer			
Minimum operating differential pressure (Δp_{min}^{-1})	12 kPa 120 mbar				
Accuracy class (AC ¹)	up to 10				
Lock-up pressure class (SG ¹)	up to 20				
Nominal size (DN ^{1,2})	DN 40 1-1/2"; DN 50 2"				
Orifice	Cirval CE 200: 3/4" Cirval CE 300: 1-1/2"				
Connections****	Cirval CE 200: 1-1/2" and 2" accor Cirval CE 300: 2" according to ISO according to ANSI B16.5	-			

(*) NOTE: Different functional features and/or extended temperature ranges may be available on request. Stated inlet gas temperature range is the maximum for which the equipment's full performance, including accuracy is guaranteed. Product may have a different pressure or temperature ranges according to the version and/or installed accessories.
 (**) NOTE: Stated temperature range is the operating range for which the equipment's mechanical resistance and leakage rate are guaranteed. Some body materials, if multiple choices are available, may not be suitable for all the available versions shown.
 (***) NOTE: Stated temperature range is the range for which the equipment's full performance, including accuracy and lock-up are guaranteed. Some body materials, if injultiple choices are available, may not be suitable for all the available versions shown.

Table 1 Features

Materials and Approvals

Part	Material			
Body	Ductile iron GS 400-18 ISO 1083			
Cover	Die cast aluminum			
Seat	Brass			
Diaphragm	Nitrile rubber			
Sealing ring	Nitrile			
NOTE: The materials indicated above refer to the standard models. Different materials can be provided according to spe- cific needs.				

Table 2 Materials

Construction Standards and Approvals

The **Cirval CE** regulator is designed according to European standard EN 334. The regulator reacts in opening (Fail Open) according to EN 334.

The product is certified according to European Directive 2014/68/EU (PED). Leakage class: bubble tight, better than class VIII according to ANSI/FCI 70-3.

Design pressure by version

Design pressure (PS according to EN334)							
Version	Bc	dy	Slam shut				
	MPa	bar	MPa	bar			
all versions	0.86	8.6	2.00	20			

 Table 3 Design pressure for body and slam shut

Design pressure (PS according to EN334)												
	Control head											
Parts	200	BP	300)BP	200	MP	300	MP	200)TR	300)TR
	MPa	bar	MPa	bar	MPa	bar	MPa	bar	MPa	bar	MPa	bar
Covers	0.86	8.6	0.86	8.6	0.86	8.6	0.86	8.6	0.86	8.6	0.86	8.6
Diaphgragm	0.03	0.3	0.03	0.3	0.07	0.7	0.10	1	0.17	1.7	0.17	1.7
Max Diaphgragm Δp	0.02	0.2	0.02	0.2	0.05	0.5	0.07	0.7	0.11	1.1	0.11	1.1

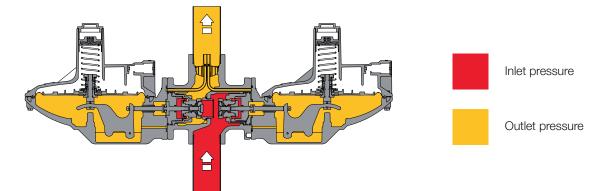
Table 4 Design pressure for regulator's parts

General link to the calibration tables: **PRESS HERE** or use the QR code:

MAOP Ma	MAOP Maximum Allowable Operating Pressure (p _{umax} according to EN334)								
			Internal se	ensing line		External sensing line			
		200BP 200	-	300BP 300MP 300TR		200BP 200MP 200TR		300BP 300MP 300TR	
		MPa	bar	MPa	bar	MPa	bar	MPa	bar
WITH CE MARKING	all versions	0.52	5.2	0.52	5.2	0.86	8.6	0.86	8.6

Table 5 MAOP Maximum Allowable Operating Pressure with CE marking

Accessories


For the pressure regulators:

- Integral Full Monitor (IFM)
- Slam shut valve

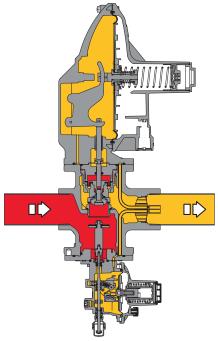
Integral Full Monitor (IFM)

IFM is an overpressure protection device, which will take over a failing worker regulator. In this configuration the gas flows through the monitor first and then through the worker (or active) regulator.

The monitor regulator outlet pressure set-point shall be set higher than the worker to allow the monitor regulator to be in a wide open position during normal operation. With the Integral Full Monitor, the Cg valve coefficient is 5% lower than the corresponding version without. When the outlet pipe increases more than 1 diameter, installing an external sensing line is recommended to guarantee optimal performances.

Figure 5 Cirval CE IFM

Integral Full Monitor (IFM) types and ranges							
Model	Control head	Rang	Range Wh				
Woder	Control nead	kPa	mbar	web link			
Cirval CE 200	BP	1.4 - 8.2	14 - 82	<u>TT 1817</u>			
Cirval CE 200	MP	8 - 32.5	80 - 325	<u>TT 1817</u>			
Cirval CE 200	TR	30 - 83	300 - 830	<u>TT 1817</u>			
Cirval CE 300	BP	1.4 - 8.5	14 - 85	<u>TT 1818</u>			
Cirval CE 300	MP	7.9 - 50.3	79 - 503	<u>TT 1818</u>			
Cirval CE 300	TR	49.5 - 83	495 - 830	<u>TT 1818</u>			


Slam Shut LA

The Cirval CE pressure regulator offers the possibility of installing an **incorporated LA slam shut valve** and this can be done either during the manufacturing process or be retrofited in the field. **Retrofitting the LA can be done without modifying** the pressure regulator body assembly.

With the built-in slam shut, the Cg valve coefficient is 5% lower than the corresponding version without.

The main characteristics of this device are:

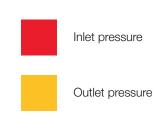
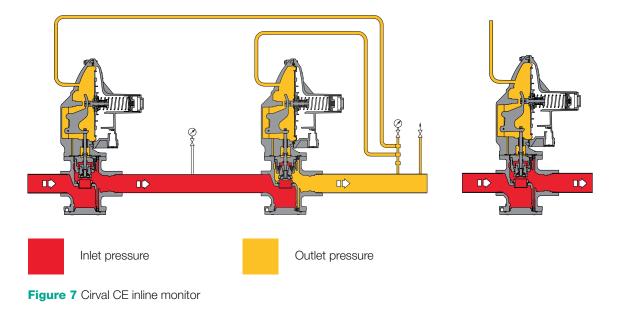


Figure 6 Cirval CE with LA

Pressure swi	Pressure switch types and ranges							
COV Turce	Medel	Operation	Rang	e Wh	Spring Table			
SSV Type	SSV Type Model		kPa	mbar	web link			
	BP	OPSO	3 - 18	30 - 180	TT 00014			
LA		DF	UPSO	0.6 - 6	6 - 60	<u>TT 00214</u>		
LA	MD	OPSO	14 - 45	140 - 450	TT 00014			
LA	MP	UPSO	1 - 24	10 - 240	<u>TT 00214</u>			
	TR	OPSO	25 - 550	250 - 5500	TT 00214			
LA		UPSO	10 - 350	100 - 3500	11 00214			


Table 7 Settings table

General link to the calibration tables: **PRESS HERE** or use the QR code:

In-line monitor

In-line monitor is an emergency pressure regulator that is usually upstream from the worker regulator, in an abnormal event, when the worker regulator is unable to maintain downstream pressure from exceeding the set point, the monitor will take over the worker regulator at a set point slightly higher. An external sensing line is required in upstream monitor configurations, and the internal sensing line will be plugged.

_	_	_	_	_	_
- 2			Ξ.		
	-	-	-	_	-
-				-	
			а.		
- 6					
	а.		Ξ.		Ξ.
			-		۰.

Balanced valve design (Figure 8 - Item 1)

The Cirval CE is a spring loaded, lever-operated regulator that incorporates a balanced cartridge design. The balancing piston allows an opposite force equal to the inlet pressure to be applied on the back side of the orifice's seat disk. This feature improves the accuracy of the outlet pressure setting as inlet pressure fluctuates and provides high turndown ratio across a wide flow range.

Integral strainer (Figure 8 - Item 2)

The Cirval CE is equipped with a removable internal 300 micron (50 U.S. mesh) strainer to prevent foreign particles, such as weld slag or PE shavings, to get stuck between the orifice and seat/disk thus preventing lockup. The purpose of the strainer is to provide protection to the Cirval CE and its optional accessories thus protecting the customers downstream piping system. The strainer can be easily accessed to be cleaned or replaced without removing the regulator body from the piping.

Token relief valve (Figure 8 - Item 3)

The Cirval CE has an optional token relief valve that discharges a small amount of gas into the atmosphere when the regulator exceeds the relief valve set point. Token relief valve cannot be used as overpressure protection device. However it can be activated or deactivated in the field, if necessary.

During no-flow conditions, thermal expansion of the gas can cause downstream static pressure to build up. The token relief valve will prevent downstream pressure from rising, and if equipped, can prevent nuisance tripping of the slam shut valve.

Outlet pressure sensing (Figure 8 - Item 4)

The Cirval CE can sense downstream pressure internally (4a) or externally (4b). Internal sensing lines are fully independent between accessories to provide Independent control.

On internal sensing line version can be connected without plugging the internal sensing and use a secondary external sense line connected to the lower diaphragm case. For external sensing line version internal sensing line must be plugged

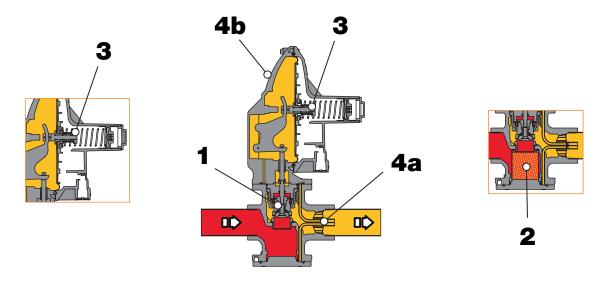


Figure 8 Cirval CE components location

Safety limitation

In case of a single regulator supplied without built-in overpressure protection device (SSV or IFM), the regulator shall be protected with a secondary means of overpressure protection.

The overpressure protection must be provided per code capable of limiting the downstream pressure to the system.

- 66	

Weights and Dimensions

The Cirval CE

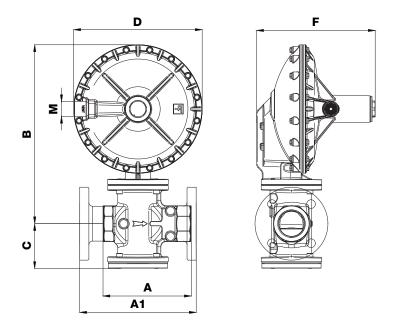


Figure 9 Cirval CE dimensions

Weights and Dimensior	ns (for other connections ple	ase contact your closest Pi	etro Fiorentini representativ	e)	
Model	Cirval (CE 200	Cirval CE 300		
	[mm]	inches	[mm]	inches	
A	177	7.0"	193	7.6"	
A1	-	-	254	10.0"	
В	259	10.2"	391.2	15.4"	
С	66	2.6"	99.1	3.9"	
D	185.4	7.3"	279.4	11.0"	
F	177.8	7.0"	256.5	10.1"	
М	Rp 3	3/4"	Rp 3/4"		
Inlet*	1-1/2";	2" GAS	2" GAS; 2" PN16/ANSI150RF		
Outlet*	1-1/2";	2" GAS	2" GAS; 2" PN	16/ANSI150RF	
Tubing Connections		Øe 10 x Øi 8 (on red	quest imperial sizing)		
Weight	Kg	lbs	Kg	lbs	
Threaded	5.4	11.9	11.8	26	
Flanged	-	-	16	35.3	
(*) NOTE: for other type	s of connections, please cor	ntact our offices.			

 Table 8 Weights and dimensions

Cirval CE with IFM

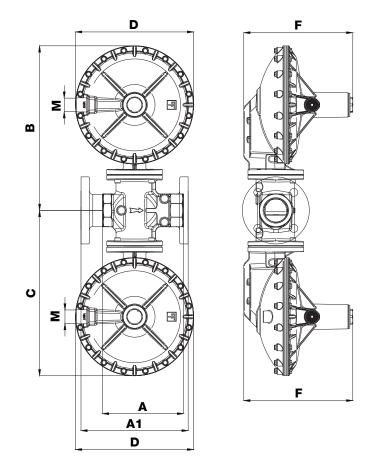


Figure 10 Cirval CE with IFM dimensions

Weights and Dimensior	ns (for other connections ple	ase contact your closest Pi	etro Fiorentini representative	e)	
Model	Cirval	CE 200	Cirval CE 300		
	[mm]	inches	[mm]	inches	
A	177	7.0"	193	7.6"	
A1	-	-	254	10.0"	
В	259	10.2"	391.2	15.4"	
С	259	10.2"	391.2	15.4"	
D	185.4	7.3"	279.4	11.0"	
F	177.8	7.0"	256.5	10.1"	
Μ	Rp	3/4"	Rp 3/4"		
Inlet*	1-1/2";	2" GAS	2" GAS; 2" PN16/ANSI150RF		
Outlet*	1-1/2";	2" GAS	2" GAS; 2" PN	16/ANSI150RF	
Tubing Connections		Øe 10 x Øi 8 (on red	quest imperial sizing)		
Weight	Kg	lbs	Kg	lbs	
Threaded	7.1	13.6	16.8	37.3	
Flanged	-	-	21	46.3	
(*) NOTE: for other type	s of connections, please cor	ntact our offices.			

 Table 9 Weights and dimensions

Cirval CE with LA

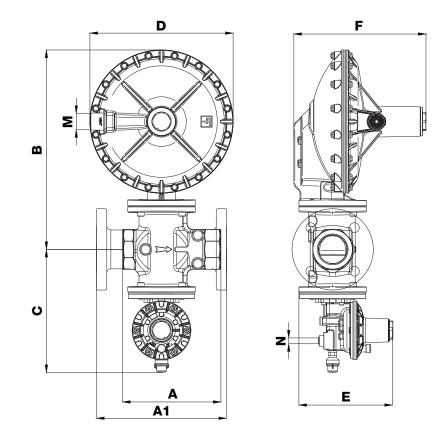


Figure 11 Cirval CE with LA dimensions

Model	Cirval (CE 200	Cirval CE 300		
-	[mm]	inches	[mm]	inches	
A	177	7.0"	193	7.6"	
A1	-	-	254	10.0"	
В	259	10.2"	391.2	15.4"	
С	208.3	8.2"	241.3	9.5"	
D	185.4	7.3"	279.4	11.0"	
E	165.1	6.5"	185.4	7.3"	
F	177.8	7.0"	256.5	10.1"	
M	Rp 3	3/4"	Rp 3/4"		
N	Rp 3	3/4"	Rp 3/4"		
Inlet*	1-1/2";	2" GAS	2" GAS; 2" PN16/ANSI150RF		
Outlet*	1-1/2";	2" GAS	2" GAS; 2" PN	16/ANSI150RF	
Tubing Connections		Øe 10 x Øi 8 (on red	quest imperial sizing)		
Weight	Kg	lbs	Kg	lbs	
Threaded	6.4	14.1	12.8	28.2	
Flanged	-	-	17	37.5	

Table 10 Weights and dimensions

Sizing and Cg

In general, the choice of a regulator is made based on the calculation of the flow rate determined by using the flow rate coefficients (Cg) and the form factor (K1) as indicated by the EN 334 standard. Sizing is available through the on-line Pietro Fiorentini sizing program.

Flow rate coefficient							
Model	Cirval CE 200	Cirval CE 300					
Cg	200	759					
K1	89	96					

Table 11 Flow rate coefficient

T = gas temperature (°C)

For sizing **PRESS HERE** or use the QR code:

Note: In case you do not have the proper credentials to access, feel free to contact your closest Pietro Fiorentini representative.

In general the on-line sizing considers multiple variables as the regulator is installed in a system, enabling a better and multiperspective approach to the sizing.

For different gases, and for natural gas with a different relative density other than 0.61 (compared to air), the correction coefficients from the following formula shall be applied.

$$F_{c} = \sqrt{\frac{175.8}{S \times (273.16 + T)}}$$

$$F_{c} = \sqrt{\frac{316.44}{S \times (459.67 + T)}}$$

$$S = relative density (refer to Table 12)$$

$$S = relative density (refer to Table 12)$$

S = relative density (refer to Table 12) T = gas temperature (°F)

				÷	
Ξ.			Ξ.		
_	- ·	Ξ.	- ·	-	Ξ.
		÷.		×.	÷.
	_	_	_	_	_
			Ξ.		
-	_	Ξ.	_	-	

Correction Factor Fc									
Gas Type	Relative Density S	Correction Factor Fc							
Air	1.00	0.78							
Propane	1.53	0.63							
Butane	2.00	0.55							
Nitrogen	0.97	0.79							
Oxygen	1.14	0.73							
Carbon Dioxide	1.52	0.63							

Note: the table shows the Fc correction factors valid for Gas, calculated at a temperature of 15°C | 59 °F and at the declared relative density.

Table 12 Correction Factor Fc

Flow rate conversion

 $Stm^{3}/h \ge 0.94795 = Nm^{3}/h$

Nm³/h reference conditions T= 0 °C; P= 1 barg | T= 32 °F; P= 14.5 psig Stm³/h reference conditions T= 15 °C; P= 1 barg | T= 59 °F; P= 14.5 psig

 Table 13
 Flow rate conversion

CAUTION:

In order to get optimal performance, to avoid premature wear on the regulators components, and to limit noise emissions, it is recommended to check the gas speed and its compliance with local practice and regulations. The gas speed at the outlet flange of the regulator which may be calculated by the following formula:

$$V = 345.92 \times \frac{Q}{DN^2} \times \frac{1 - 0.002 \times Pd}{1 + Pd} \qquad V = 0.0498 \times \frac{Q}{DN^2} \times \frac{14.504 - 0.002 \times Pd}{14.504 + Pd}$$

V = gas speed in m/s Q = gas flow rate in Stm³/h DN = nominal size of regular in mm Pd = outlet pressure in barg V = gas speed in ft/s Q = gas flow rate in Scfh DN = nominal size of regular in inches Pd = outlet pressure in psi

Flow capacity tables Cirval 200 - DN 40 | AC 10

from 5 kPa | 50 mbar up to 50 kPa | 500 mbar

Cirval 200 - accuracy 10% ; AC10 according to EN334											
Inlat n					Outlet pressure						
Inlet p	essure	5 kPa 50 mbar		15 kPa 150 mbar		25 kPa 250 mbar		40 kPa 400 mbar		50 kPa 500 mbar	
kPa	barg	Stm³/h	Scfh	Stm³/h	Scfh	Stm³/h	Scfh	Stm³/h	Scfh	Stm³/h	Scfh
50	0.5	105	3800	105	3800	85	3100	145	5200	-	-
100	1	180	6400	170	6100	135	4800	190	6800	175	6200
150	1.5	230	8200	230	8200	180	6400	270	9600	245	8700
200	2	265	9400	275	9800	225	8000	335	11900	310	11000
300	3	280	9900	325	11500	300	10600	420	14900	400	14200
400	4	265	9400	335	11900	330	11700	425	15100	420	14900
500	5	260	9200	350	12400	370	13100	430	15200	440	15600
Cg = 200 K1 = 89											

Table 14 Cirval 200 - DN40 | AC10 flow rate

Cirval 200 - DN 50 | AC 10 from 5 kPa | 50 mbar up to 50 kPa | 500 mbar

Cirval 200 - accuracy 10% ; AC10 according to EN334											
Indat as		Outlet pressure									
Inlet pr	ressure	5 kPa 50 mbar		15 kPa 150 mbar		25 kPa 250 mbar		40 kPa 400 mbar		50 kPa 500 mbar	
kPa	barg	Stm³/h	Scfh	Stm³/h	Scfh	Stm ³ /h	Scfh	Stm³/h	Scfh	Stm³/h	Scfh
50	0.5	115	4100	105	3800	85	3100	150	5300	-	-
100	1	180	6400	175	6200	145	5200	195	6900	180	6400
150	1.5	255	9100	255	9100	205	7300	280	9900	255	9100
200	2	300	10600	310	11000	255	9100	355	12600	325	11500
300	3	320	11400	350	12400	320	11400	455	16100	430	15200
400	4	305	10800	340	12100	340	12100	465	16500	455	16100
500	5	300	10600	360	12800	405	14400	470	16600	475	16800
Cg = 200	Cg = 200 K1 = 89										

Table 15 Cirval 200 - DN50 | AC10 flow rate

Note: Recommended max flow rate are considering multiple factors such as: extend the regulator's life, mitigate the erosion/vibrations for high velocity and to minimize the noise emission. **Remark:** all capacity stated are considering a stand alone regulator. In case of incorporated accessories a reduction of flow shall be considered.

		-		_	
				-	
- 5					Ξ.
				-	
				×.	
				-	
_	_	_	_	_	_
				-	
				2	_
				-	

Cirval 300 - DN 50 | AC 10 from 5 kPa | 50 mbar up to 50 kPa | 500 mbar

Cirval 300 - accuracy 10% ; AC10 according to EN334 **Outlet pressure** Inlet pressure 15 kPa | 150 mbar 25 kPa | 250 mbar 40 kPa | 400 mbar 5 kPa | 50 mbar 50 kPa | 500 mbar kPa Stm³/h Scfh Stm³/h Scfh Stm³/h Scfh Stm³/h Scfh Stm³/h Scfh barg 0.5 _ -1.5 K1= 96 Cg = 759

Table 16 Cirval 300 - DN50 | AC10 flow rate

Note: Recommended max flow rate are considering multiple factors such as: extend the regulator's life, mitigate the erosion/vibrations for high velocity and to minimize the noise emission. **Remark:** all capacity stated are considering a stand alone regulator. In case of incorporated accessories a reduction of flow shall be considered.

Customer Centricity

Customer centricity is a way of running your business — implementing a perfect customer experience at each stage of the pipeline. Pietro Fiorentini is one of the main Italian international company with high focus on product and service quality.

The main strategy is to create a stable, long-term relationship, putting the customer's needs first. Lean management and customer centricity are used to improve and maintain the highest level of customer experience.

Support

Pietro Fiorentini's top priority is to provide support to the client in all phases of project development, during installation, start up and operation. Pietro Fiorentini has developed a highly standardized Intervention-Management-System (IMS), which helps to facilitate the entire process and putting the customer at the forefront of every decision in our process while manufacturing or developing a product to help improve the product and service. With our IMS business model many services are available remotely, avoiding long waiting times, improving service, and avoiding unnecessary expenses.

Training

Pietro Fiorentini offers training services available for both experienced operators and new customers. The training is offered for all levels of our customers which can include one or all of the following: sizing of equipment, application, installation, operation, maintenance and is prepared according to the level of use and the customer's need.

Customer Relation Management (CRM)

The service and care of our customers are one of the main missions and vision of Pietro Fiorentini. For this reason, Pietro Fiorentini has enhanced the customer relation management system. This enables us to track every opportunity and request from our customers into one single information point and allows us to coordinate information allowing us to give the customer improved service.

TB0172ENG

The data are not binding. We reserve the right to make changes without prior notice.

cirvalCE_technicalbrochure_ENG_revB

www.fiorentini.com